2023-10-05
The study is to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it. (John McCarthy, 1956)
AI can be described as the effort to automate intellectual tasks normally performed by humans. (Chollet)
The field of artificial intelligence, or AI, is concerned with not just understanding but also building intelligent entities—machines that can compute how to act effectively and safely in a wide variety of novel situations. (Russel and Norvig, 1995/2021)
The quest for “artificial flight” succeeded when engineers and inventors stopped imitating birds and started using wind tunnels and learning about aerodynamics. (Russel and Norvig, 1995/2021)







Version 1

Version 2

python3 -m -s -n 1000 spacy convert dickens-hard.iob trainpython3 -m spacy init fill-config data/base_config.cfg data/config.cfgtrain command with the config.cfg filepython3 -m spacy train config.cfg -o model --verbosepython3 -m spacy train config.cfg -o model --verbose --gpu-id 0model-bestnlp = spacy.load("models/output/model-best")Counter({'door': 14, 'bottle': 9, 'gloves': 9, 'key': 7, 'book': 6, 'table': 6, 'window': 6, 'pictures': 4, 'waistcoat': 4, 'candle': 4, 'chimney': 4, 'jar': 3, 'telescope': 3, 'box': 3, 'fan': 3, 'pocket': 3, 'thimble': 3, 'windows': 3, 'cabinet': 3, 'egg': 3, 'brick': 3, 'watch': 2, 'cupboards': 2, 'rope': 2, 'cakes': 2, 'crockery': 2, 'booth': 2, 'pair': 2, 'pockets': 2, 'daisy': 1, 'maps': 1, 'pegs': 1, 'shelves': 1, 'saucer': 1, 'lamps': 1, 'doors': 1, 'locks': 1, 'curtain': 1, 'lock': 1, 'fountains': 1, 'doorway': 1, 'telescopes': 1, 'paper': 1, 'knife': 1, 'legs': 1, 'cake': 1, 'spades': 1, 'bed': 1, 'plate': 1, 'lesson': 1, 'cartwheels': 1, 'chimney?—Nay': 1, 'fireplace': 1, 'cart': 1, 'neckcloth': 1, 'multiplication': 1, 'cannon': 1, 'muzzle': 1, 'carpet': 1, 'tables': 1, 'chairs': 1, 'carpets': 1, 'pianoforte': 1, 'board': 1, 'account': 1, 'clamps': 1, 'girders': 1, 'brushes': 1, 'brooms': 1, 'flag': 1, 'fountain': 1, 'eyeglass': 1, 'balloon': 1, 'speaking': 1, 'pigsty': 1, 'tongs': 1, 'glasses': 1, 'dial': 1, 'steeple': 1, 'kettle': 1, 'story': 1, 'hat': 1, 'ladder': 1, 'cabinets': 1, 'appliances': 1, 'slate': 1, 'handkerchief': 1, 'penknife': 1, 'piston': 1, 'bell': 1, 'birdcage': 1, 'bells': 1, 'cap': 1, 'lights': 1})
Counter({'door': 22, 'window': 13, 'knife': 7, 'hand': 6, 'lamp': 6, 'pocket': 4, 'candle': 3, 'doorway': 3, 'glass': 3, 'England': 3, 'rope': 3, 'papers': 2, 'book': 2, 'lamps': 2, 'page': 2, 'lantern': 2, 'stairs': 2, 'timber': 2, 'stair': 2, 'case': 2, 'Andamans': 2, 'wooden': 2, 'leg': 2, 'bottle': 1, 'mantelpiece': 1, 'Frenchman': 1, 'post': 1, 'keyhole': 1, 'clothes': 1, 'books': 1, 'drawer': 1, 'Vauxhall': 1, 'Thames': 1, 'kitchen': 1, 'wire': 1, 'facts': 1, 'London': 1, 'cupboards': 1, 'carafe': 1, 'lids': 1, 'hinges': 1, 'Number': 1, 'Bishopgate': 1, 'detective': 1, 'foot': 1, 'handkerchief': 1, 'wall': 1, 'stockings': 1, 'beads': 1, 'oven': 1, 'chambers': 1, 'criminals': 1, 'ring': 1, 'Andaman': 1, 'blinds': 1, 'test': 1, 'West': 1, "boat's": 1, 'piece': 1, 'Islander': 1, 'lid': 1, 'barrier': 1, 'handcuffs': 1, 'bracelets': 1, 'flames': 1, 'quarter': 1, 'troopers': 1, 'pair': 1, 'four': 1, 'Feringhee': 1, 'Englishman': 1, 'plunder': 1, 'East': 1, 'mail': 1, 'scoundrel': 1, 'cocaine': 1})
alberti in the lalamdah repository| BERT | ALBERTI | |
|---|---|---|
| Paper | 0.619 | 0.636 |
| My test (5 epochs) | 0.412 | 0.588 |
Results from first test. Both models probably need to be trained longer.
| BERT | ALBERTI | |
|---|---|---|
| Paper | 0.619 | 0.636 |
| My test (15 epochs) | 0.665 | 0.659 |
taggertagger/rwtagger/modelspip install virtualenvtagger using: virtualenv rwvenvsource rwvenv/local/bin/activatepyenv install 3.7.5pyenv local 3.7.5pip3.7 install torch==1.10.1 # available for Python 3.7.5pip3.7 install torchvision==0.12.0 # Hopefully right versionpip3.7 install torchaudio==0.11.0 # Hopefully right versionpip3.7 install flair==0.10pip3.7 install pandas==1.3.5pip3.7 install nltk==3.6.7pip3.7 install pytorch_transformers==1.2.0pip3.7 install openpyxl==3.0.9 # Optionalpython3.7, there do import nltk and nltk.download("punkt"). Then quit quit()tagger/rwtagger/plaintagged-pred also in tagger/rwtaggertagger/rwtagger, run: python3.7 rwtagger.py plain tagged-pred -t direct -conftagged-preddirect_pred to just directgold within rwtaggertagged-testpython3.7 rwtagger.py -m test gold tagged-test -t direct -conftagged-test, including the scores in results_stats